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Abstract— The move towards the microservice based 

architecture is well underway. In this architectural style, small and 

loosely coupled modules are developed, deployed, and scaled 

independently to compose cloud-native applications.  However, for 

carrier-grade service providers to migrate to the microservices 

architectural style, availability remains a concern. Kubernetes is 

an open source platform that defines a set of building blocks which 

collectively provide mechanisms for deploying, maintaining, 

scaling, and healing containerized microservices. Thus, 

Kubernetes hides the complexity of microservice orchestration 

while managing their availability. In a preliminary work we 

evaluated Kubernetes, using its default configuration, from the 

availability perspective in a private cloud settings.  In this paper, 

we investigate more architectures and conduct more experiments 

to evaluate the availability that Kubernetes delivers for its 

managed microservices. We present different architectures for 

public and private clouds. We evaluate the availability achievable 

through the healing capability of Kubernetes. We investigate the 

impact of adding redundancy on the availability of microservice 

based applications. We conduct experiments under the default 

configuration of Kubernetes as well as under its most responsive 

one. We also perform a comparative evaluation with the 

Availability Management Framework (AMF), which is a proven 

solution as a middleware service for managing high-availability. 

The results of our investigations show that in certain cases, the 

service outage for applications managed with Kubernetes is 

significantly high. 

Keywords— Microservices; Containers; Orchestration; Docker; 

Kubernetes; Failure; Availability 

I. INTRODUCTION 

During the past decade, the computing community has 
witnessed a migration towards the cloud [1]. In this context, the 
microservices architectural style [2] has drawn a substantial 
attention in the industry. As opposed to the monolithic 
architectural style, the microservices architectural style tackles 
the challenges of building cloud-native applications by 
leveraging the benefits of the cloud [3]. Although this 
architectural style is poised to revolutionize the IT industry, it 
has so far received a limited attention from academia and 
research communities.  

Microservices [4] are a realization of the service-oriented 
architectural style for developing software composed of small 

services that can be deployed and scaled independently by fully 
automated deployment machinery, with minimum centralized 
management [2]. Microservices are built around separate 
business functionalities. Each microservice runs in its own 
process and communicates through lightweight mechanisms, 
often using APIs [3].  Microservices address the drawbacks of 
monolithic applications. They are small and can restart faster at 
the time of upgrade or failure recovery. Microservices are 
loosely coupled, and failure of one microservice will not affect 
other microservices of the system. The fine granularity of this 
architectural style makes the scaling more flexible and more 
efficient as each microservice can evolve at its own pace. 

To leverage all these benefits, one needs to use technologies 
aligned with the characteristics of this architectural style. 
Containerization is the technology that enables virtualization at 
the operating system level [5]. Containers are lightweight and 
portable. Therefore, they are suitable for creating microservices.  
Docker [6] is the leading container platform that packages code 
and dependencies together and ships them as a container image. 
Since containers are isolated, they are not aware of each other. 
Thus, there is a need for an orchestration platform to manage the 
deployment of containers. Kubernetes [7] is an open-source 
platform that enables the automated deployment, scaling, and 
management for containerized applications. Kubernetes relieves 
application developers from the complexity of implementing 
their application’s resiliency. Therefore, it has become a popular 
platform for deploying microservice based applications. 

The move towards the microservice based architectures is 
well underway. However, as an important quality attribute for 
carrier grade service for instance, the availability remains a 
concern. Availability is a non-functional characteristics defined 
as the amount of service outage over a period of time [8]. High 
availability is achieved when the system is available at least 
99.999% of the time. Therefore, the total downtime allowed in 
one year for highly available systems is around 5 minutes [9]. 
Some characteristics of microservices and containers such as 
being small and lightweight would naturally contribute to 
improve the availability [10]. Kubernetes provides healing for 
its managed microservice based applications [7]. The healing 
capability of Kubernetes consists of restarting the failed 
containers and replacing or rescheduling containers when their 
hosts fail. The healing capability is also responsible of 



advertising about the unhealthy containers until they are ready 
again. These features would also naturally improve the 
availability of the services provided by the applications 
deployed with Kubernetes. The question is what is the 
availability rendered by these applications?  

In this paper, we are interested in evaluating microservice 
based applications from the availability perspective, since our 
ultimate goal is to enable high availability for microservices. As 
a follow up to [11] for an initial setup in a private cloud and the 
default Kubernetes configuration for healing, we have 
investigated other architectures, configurations, and conducted a 
series of experiments with Kubernetes and measured the outage 
times for different failure scenarios.  The goal was to answer the 
following research questions (RQ): 

• RQ1: What is the level of availability that 
Kubernetes can support for its managed 
microservices solely through its healing features?  

• RQ2: What is the impact of adding redundancy on 
the availability achievable with Kubernetes? 

• RQ3: What is the availability achievable with 
Kubernetes under its most responsive 
configuration? 

• RQ4: How does the availability achievable with 
Kubernetes compare to existing solutions? 

We conducted our experiments under the default 
configuration of Kubernetes as well as its most responsive one. 
To better position and characterize the obtained results we opted 
for a comparison with an existing solution for availability 
management, the Availability Management Framework (AMF) 
[12], a proven middleware service for high availability (HA) 
management.   

The rest of the paper is organized as follows. Section II 
introduces the Kubernetes’ architecture components and the 
different architectural solutions for deploying microservice 
based applications with Kubernetes. In Section III we present 
our experiments’ settings, the failure scenarios and the 
availability metrics. The experiments, the results and the 
analysis with respect to the research questions are presented in 
Section IV. We discuss the lessons learned and the threats to 
validity in Section V. In Section VI, we review the related work 
on microservice based applications deployed with Kubernetes 
from the availability perspective. We conclude in Section VII. 

II. ARCHITECTURES FOR DEPLOYING MICROSERVICE 

BASED APPLICATIONS WITH KUBERNETES 

A. Kubernetes Architectural Components 

Kubernetes is a platform for automating the deployment and 
scaling of containerized applications across a cluster [7]. The 
Kubernetes cluster has a master-slave architecture. The nodes in 
a Kubernetes cluster can be either virtual or physical machines. 
The master node hosts a collection of processes to maintain the 
desired state of the cluster. The slave nodes, that we will refer to 
them simply as nodes, have the necessary processes to run the 
containers and be managed by the master [7]. The most 
important process running on every node is called Kubelet [7]. 
Kubelet runs the containers assigned to its node via Docker, 

periodically performs health checks on them, and reports to the 
master their statuses as well as the status of the node.  

The smallest and simplest unit that Kubernetes deploys and 
manages is called a pod [7]. A pod is a collection of one or more 
containers and provides shared storage and network for its 
containers. Containers in a pod share its IP address and port 
space. A pod also has the specifications of how to run its 
containers. Customized labels can be assigned to pods to group 
and query them in the cluster. All this information is described 
in the pod template. In practice, microservices are containerized 
and deployed on a Kubernetes cluster as pods.  

The pods in a Kubernetes cluster are deployed and managed 
by controllers [7]. A controller specification consists of the pod 
template, the desired number of replicas of that pod the 
controller should maintain at all times, and other information 
such as upgrade strategy and pods’ labels. Once the controller is 
deployed to the cluster, it creates the desired number of pods 
based on the provided template and continuously maintains their 
number equal to the desired number. For example, when a pod 
fails due to a node failure, the corresponding controller will 
automatically create a new one on another node.  

There are different types of controllers in Kubernetes and 
each of them is suitable for a specific purpose. For example, 
DaemonSet controllers run a copy of a pod on all nodes, Job 
controllers create a number of pods and make sure they 
successfully terminate, and StatefulSet controllers are used to 
manage stateful applications. In this paper, we focus on the 
deployment controller used for deploying stateless applications. 

As mentioned before, a pod has its own IP address, and this 
IP address may change often as the pod is deleted and revived 
dynamically by its controller. This frequent change of IP 
addresses makes it impossible to keep track of the pods and 
communicate with them through their IP addresses. Kubernetes 
provides an abstraction called service [7], which defines a 
logical set of pods as its endpoints and a policy by which to 
access them. A service groups pods based on their labels and not 
based on their IP addresses, and so it hides the changes of IP 
addresses of pods from the client. A service has an intercluster 
virtual IP address that redirects to its endpoints either randomly 
or in a round robin manner. 

Besides Kubelet, the other important process running on all 
nodes is called Kube-Proxy [7]. Kube-Proxy watches the master 
for information about the services created in the cluster and their 
endpoints. It updates the iptables of the node and adds rules to 
forward the requests for a service to its endpoints. When a 
service or its endpoint is removed, Kube-Proxy updates the 
iptables of the node accordingly.  

Kubernetes’ services can be of different types. The default 
type is called “Cluster IP”. Services of this type are accessible 
only from within the cluster. The “Node Port” type of service is 
built on top of a Cluster IP service and exposes the service on 
the same port of each node of the cluster. Lastly, a “Load 
Balancer” type of service is exposed externally only when the 
cluster is running in a public cloud. 

Kubernetes provides another way, called ingress, to access 
services from outside of the cluster [7]. An ingress is a collection 
of rules for inbound connections to reach certain services in the 



cluster that are defined as backends for the ingress. For an 
ingress to work, an ingress controller needs to run on the cluster. 
Ingress controllers are not part of Kubernetes. To have an ingress 
controller, one should either implement it or use one that is 
available, e.g. Nginx [13] or HAProxy [14]. 

Kubernetes hides all this complexity behind its API. 
Therefore, Kubernetes' users do not need to implement the 
required mechanisms to manage their applications’ resilience.  
Kubernetes' users only have to interact with the API to specify 
the desired deployment architecture and Kubernetes will be in 
charge of orchestration and availability management of the 
application. However, users with advanced requirements such as 
high availability may need to dive into Kubernetes details, since 
the Kubernetes architectural components can be used in different 
ways to deploy applications in a Kubernetes cluster. For 
example, an application can be deployed without using services 
at all. In this case, a mechanism should be implemented to 
guarantee that each pod advertises its IP address to the rest of the 
pods. Moreover, Kubernetes can run in a cluster in a public or a 
private cloud. The architecture and the efforts needed to deploy 
an application in each of these platforms is different. In this 
paper, we discuss architectures for application deployment in 
both public and private clouds. These architectures are based on 
our understanding of Kubernetes architectural components 
described in [7].  

B. Deploying Containerized Applications in a Kubernetes 

Cluster Running in a Public Cloud 

In this section, we consider a Kubernetes cluster composed 
of VMs running in a public cloud. Kubernetes runs on all VMs 
and creates a unified view of the cluster. One of the VMs is 
selected as the master and it is in charge of managing the nodes. 
As we are concerned with High Availability, we should consider 
an HA cluster composed of more than one master. However, 
such setting is still experimental and non-mature for Kubernetes. 
Thus, we decided to go with only one master and keep failure 
from the master side out of the scope of this paper. For 
simplicity, the application here is composed of only one 
microservice. The pod template for the containerized 
microservice as well as its desired number of replicas are 
included in a deployment controller specification which is 
deployed to the cluster. We will discuss two ways to expose 
services in Kubernetes clusters running in a public cloud. 

1) Service of Type Load Balancer: An architecture for 

deploying applications in a Kubernetes cluster using a service of 

type Load Balancer in a public cloud is shown in Fig. 1. In 

addition to a cluster IP, services of type Load Balancer have an 

external IP address that is automatically set to the cloud 

provider’s load balancer IP address. Using this external IP 

address, which is public, it is possible to access the pods from 

outside of the cluster. 

2) Ingress: There could be more than one service that need 

to be exposed externally and with the previous method, one load 

balancer is needed for each service. On the other hand, 

Kubernetes’ ingress resource can have multiple services as 

backends and minimize the number of load balancers [7]. In a 

Kubernetes cluster running in a public cloud, an ingress 

controller is deployed and exposed by a service of type Load 

Balancer [7]. Therefore, requests for all services that are sent to 

the cloud provider’s load balancer are received by the ingress 

controller and redirected to the appropriate service based on the 

rules defined in the ingress resource.  

C. Deploying Containerized Applications in a Kubernetes 

Cluster Running in a Private Cloud 

As it was previously mentioned, Kubernetes is designed to 
run on different types of platforms. However, it is important to 
understand that deploying applications to a Kubernetes cluster 
running in a private cloud requires more effort than it does for a 
public cloud. The main difference is in the way of exposing the 
application externally. Below, we will discuss two ways of 
exposing applications deployed in a Kubernetes cluster running 
in a private cloud. 

1) External Load Balancer: Fig. 2 depicts the architecture 

for exposing the service using an external load balancer. 

Services of type Node Port expose the service on the same port 

on every node in the cluster. Since it is not a good practice to 

expect the users to connect to the nodes directly, an external load 

Fig.  1. Architecture for deploying applications to Kubernetes clusters 

running in a public cloud. 
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balancer is used, which distributes the requests between the 

nodes and delivers them to the port on which the Node Port 

service is exposed. The downside of this architecture is that for 

each service in the cluster that needs to be exposed externally, 

we will need one external load balancer.  

2) Ingress: Using Kubernetes’ ingress resource is a more 

structured way to expose services. In this case, a service of type 

Cluster IP is created to redirect requests to the pods and will be 

used as the backend of the ingress resource. Also, an ingress 

controller is needed in the cluster in order to redirect the 

incoming requests to the ingress resource, which later will be 

redirected to the appropriate backend service. The ingress 

controller is deployed as one pod using a deployment controller. 

We create a service of type Node Port to expose the ingress 

controller pod to outside of the cluster. Since it is possible to 

define multiple services as backends for the ingress resource, 

this method is more practical than the previous case in which we 

needed to use a load balancer for each individual service that 

needs to be exposed. Adapting the ingress controller to a 

Kubernetes cluster running in a private cloud is not an easy task 

and there is no sufficient documentation on how to use ingress 

controllers in these types of clusters. Fig. 3 shows a generic 

architecture with ingress exposing the service in a cluster 

running in a private cloud to the outside world. 
Although the role of each Kubernetes architectural 

component is described in [15], understanding how to put them 
together is not intuitive. It is a time-consuming effort and 
requires lots of trials and errors to figure out the ways these 
components work together in practice. The aforementioned 
architectures are a result of our understanding of these 
components’ roles and several weeks of trials.  

Even though Kubernetes can run in both private and public 
clouds, one may notice that it is better tailored for public clouds 
than it is for private ones. For a Kubernetes cluster running in a 
public cloud, the application is automatically exposed to the 
outside world through a service of type Load Balancer because 
it can use the cloud provider’s load balancer. Also, using the 
ingress resource for redirecting requests to multiple services is 
less challenging. On the other hand, in a private cloud, exposing 
the application to the outside world is challenging and requires 
more efforts. One needs to either tackle the complexity of 
adapting an ingress controller to expose services or use an 
external load balancer for each service that needs to be exposed 
which will not be practical for large and complex microservice 
based applications composed of many microservices. 

III. SETTINGS, FAILURE SCENARIOS  AND METRICS 

In this section, we describe the settings for the experiments, 
the failure scenarios we considered as well as the availability 
metrics. We set a Kubernetes cluster in a private cloud (Fig. 3). 
This cluster is composed of three VMs running on OpenStack 
cloud. Ubuntu 16.04 is the OS running on all VMs. Kubernetes 
1.8.2 runs on all VMs and the container engine is Docker 17.09. 
Network Time Protocol (NTP) [16] is used for time 
synchronization between the nodes. The application deployed is 
VideoLan Client (VLC) [17]. There is one container image in 
the pod template, on which VLC is installed. Once a pod is 

deployed, an application container will be created based on this 
image and will start streaming from a file. 

Kubernetes offers three levels of health check and repair 
action for managing the availability of the deployed 
microservices.  First, at the application level, Kubernetes ensures 
that the software components executing inside a container are 
healthy either through process health check or predefined 
probes. In both cases, if the Kubelet discovers a failure, the 
container is restarted. Second, at the pod level, Kubernetes 
monitors the pod failures and reacts according to the defined 
restart policy. Finally, at the node level, Kubernetes monitors the 
nodes of the cluster through its distributed daemons for node 
failure detection. If the node hosting a pod fails, the pod is 
rescheduled into another healthy node. With respect to these 
levels of health check, we defined three sets of failure scenarios. 
In the first set, the application failure is caused by the VLC 
container process failure. In the second set, it is due to pod 
container process failure, and in the third set it is caused by the 
node failure. For each set, we experimented with different 
redundancy models [18] and with both default and most 
responsive configuration of Kubernetes. Each scenario has been 
repeated 10 times and the average of the measurements are 
shown in Table I through Table V. All the measurements 
reported in this paper are in seconds.  

The metrics we use to evaluate Kubernetes from availability 
perspective are defined below. In Fig. 4 we summarize the 
relations between these metrics. 

 

 

Fig.  4. Availability metrics. 

 
Fig.  3. Private cloud - exposing services via ingress. 
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Reaction Time: The time between the failure event we 
introduce and the first reaction of Kubernetes that reflects the 
failure event was detected. 

Repair Time: The time between the first reaction of 
Kubernetes and the repair of the failed pod. 

Recovery Time: The time between the first reaction of 
Kubernetes and when the service is available again. 

Outage Time: The duration in which the service was not 
available. It represents the sum of the reaction time and the 
recovery time as shown in Fig. 4.  

IV. EXPERIMENTS, RESULTS AND ANALYSIS   

In this section, we present the architectures, the experiments, 
the results and the analysis for answering the research question 
we posed in the introduction.    

A. Evaluating the Repair Actions  with Default Configuration 

of Kubernetes for Supporting Availability (RQ1) 

Fig. 5 shows the architecture for these experiments. The 
redundancy model in this case is No-Redundancy [18] and 
therefore, the number of pods in the deployment controller 
specification is only one.   

1) Experiments  

We evaluate the availability metrics for each of the failure 
scenarios under the default configuration of Kubernetes. 

Service Outage due to VLC Container Process Failure: 
In this scenario, the failure is simulated by killing the VLC 
container process from the OS. When the VLC container 
crashes, the Kubelet detects the crash and brings the pod to a 
state where it will not receive new requests. At this time, that is 
the reaction time, the pod is removed from the endpoints list. 
Later, the Kubelet restarts the VLC container and the video will 
start from the beginning of the file. This time marks the repair 
time. Recovery time is when the pod is in the endpoints list again 
and is ready to receive requests. 

Service Outage due to Pod Container Process Failure: 
When a pod is deployed, along with the application containers 
specified in its template, one extra container is created which is 
the pod container. Since the pod container is a process in the OS, 
it is possible that it crashes. In this scenario, the failure is 
simulated by killing the pod container process from the OS. 
When the pod container process is killed, the Kubelet detects 
that the pod container is no longer present and this marks the 
reaction time. When the new pod is created and its VLC 
container is started, the video will start streaming from the 
beginning of the file and we consider the pod as repaired. After, 
the Kubelet will add the new pod to the endpoints list and it will 
be ready to receive new requests, this marks the recovery time. 

Service Outage due to Node Failure: In this scenario, a 
node failure is simulated by the Linux’s reboot command on a 
VM hosting the pod. As mentioned before, the Kubelet is 
responsible to report the status of the node to the master, and it 
is the node controller of the master who detects the failure of the 
node. When a node hosting a pod fails, it stops sending status 
updates to the master and the master will mark the node as not 
ready after the fourth missed status update. This time is the 
reaction time. When the node is marked as not ready, the VLC 
pod on the node is scheduled for termination and after it is 
completely terminated a new one will be created. The repair time 
is when the new VLC pod is started and streaming the video. 
Recovery time is when the pod is added to the endpoints list of 
the service. 

2) Results and Analysis  

The measurements and events of this set of experiments are 
shown in Table I and Fig. 6, respectively. In Fig. 6, the failure 
of the VLC container, the pod container or the node hosting 
Pod1 is shown as the first event.  Before this event, the IP 
address of Pod1 was in the endpoints list and the service was 
available. After the failure, the service becomes unavailable. 
However, since Kubernetes has not detected the failure yet, the 
IP address of Pod1 stays in the endpoints list.  It is removed from 
the endpoints list at the reaction time. 

In this architecture, removing the IP of Pod1 from the 
endpoints list as a reaction of Kubelet to the VLC container 
failure takes 0.716 seconds, and in the case of pod container 
failure it takes 0.496 seconds. However, in the case of node 

 
Fig.  5. Concrete architecture for deploying applications with 

Kubernetes - No-Redundancy redundancy model. 
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TABLE I.  EXPERIMENTS WITH KUBERNETES - NO-REDUNDANCY 

REDUNDANCY MODEL AND DEFAULT CONFIGURATION 

Failure Trigger 
(unit: seconds) 

Reaction 

time 

Repair 

time 

Recovery 

time 

Outage 

time 

VLC Container Failure  0.716 0.472 1.050 1.766 

Pod Container Failure  0.496 32.570 31.523 32.019 

Node Failure 38.187 262.542 262.665 300.852 
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failure, removing the IP of Pod1 from the endpoints list, as a 
reaction from the node controller of the master was measured as 
38.187 seconds. The reason is that with the default configuration 
of Kubernetes, the master takes at least 30 seconds to detect a 
node failure. Because the Kubelet updates the node status every 
10 seconds and the master allows for four missed status updates 
before marking the node as not ready.  

The repair time for all scenarios is when a new pod is created 
again and streaming the video starts again. As observed in Table 
I, the repair time of the VLC container or the pod container 
failure scenarios differ significantly (0.472 seconds for the 
former and 32.570 seconds for the latter). The reason is that in 
the case of pod container failure, a graceful termination signal is 
sent to the VLC container and Docker waits 30 seconds for it to 
terminate. The repair process will not start unless the VLC 
container is terminated. For the node failure scenario, as shown 
in Table I, the repair time is considerably high. The reason is that 
with the default configuration of Kubernetes, in the case of node 
failure, the master waits around 260 seconds to start a new pod 
and recover the service. Because of these high repair times, the 
service outages for the pod container and node failure scenarios 
are significantly high, 32.019 seconds and 300.52 seconds, 
respectively. 

B. Evaluating the Impact of Redundancy on the Availability 

Support by Kubernetes (RQ2) 

To investigate the impact redundancy may have on the 
availability support by Kubernetes, we consider the architecture 
in Fig. 7 where the number of pod replicas that the deployment 
controller maintains is increased to two. In this architecture, we 
have a N-Way Active redundancy model [18]. 

1) Experiements 

We evaluate the availability metrics for each of the failure 
scenarios under the default configuration of Kubernetes with a 
N-Way Active redundancy model. We compare the results to the 
previous experiments (Section IV.A). 

Service Outage due to the VLC Container Process 
Failure: In this scenario, similar to the No-Redundancy 
redundancy model, the reaction time is when the Kubelet detects 
the VLC container has crashed and removes the pod from the 
endpoints list. By just removing the unhealthy Pod1 from 
endpoints list, the service is recovered. This is because another 
healthy pod is still on the endpoints list and ready to serve the 
requests. Therefore, the reaction time for this scenario is the 
same as the recovery time. The repair time is when the Kubelet 
has restarted the crashed VLC container and the video has 
started streaming again.  

Service Outage due to Pod Container Process Failure: In 
this scenario, same as for the No-Redundancy redundancy 
model architecture, the reaction time is when the Kubelet detects 

that the pod is no longer there. Similarly to the previous 
scenarios, the recovery time is when the unhealthy pod is 
removed from the endpoints list. The repair time is when a new 
pod is created and its VLC container is started and streaming the 
video. 

Service Outage due to Node Failure: The reaction time in 
this scenario is the same as for the No-Redundancy redundancy 
model architecture, i.e. the time the master marks the node as not 
ready and schedules the pod for termination. The recovery time 
is when the IP of Pod1 is removed from the endpoints list. The 
repair time is when Pod1 is terminated and another one is 
created. 

2) Results and Analysis 

The measurements and the events for this set of experiments 
are shown in Table II and Fig. 8, respectively. The failure of the 
VLC container, the pod container or the node hosting Pod1 is 
shown in Fig. 8. Before this event, the IP addresses of Pod1 and 
Pod2 were in the endpoints list and the service was available. 
After the failure, the service is degraded. The reason is that 
Kubernetes has not detected the failure yet and the IP address of 
the failed Pod1 is still in the endpoints list. At this point, since 
Kubernetes still assumes that Pod1 is healthy, some requests 
may be redirected to Pod1. Therefore, we consider the service as 
degraded.  

For the three failure scenarios, the measured recovery time 
is the same and this is when the IP of the failed Pod1 is removed 

 
Fig.  7. Concrete architecture for deploying applications with 

Kubernetes – N-Way Active redundancy model. 
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Fig.  8. Analysis of experiments with Kubernetes under the default 

configuration and N-Way Active Redundancy model – evaluating the 

impact of redundancy. 
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time 

Repair 

time 

Recovery 

time 

Outage 

time 

VLC Container Failure  0.579 0.499 0 0.579 

Pod Container Failure  0.696 30.986 0.034 0.730 

Node Failure 38.554 262.178 0.028 38.582 

 

 

 



from the endpoints list. However, in the case of the VLC 
container failure, this event marks both the first reaction to the 
failure as well as the recovery of the service. Therefore, for this 
scenario, recovery time is zero. Repair time happens later when 
the failed pod is completely terminated and Pod1 is created again 
and streaming the video.  

As shown in Table II, the measured outage time in the 
experiments with a N-Way Active redundancy model is 
significantly lower than for the No-Redundancy redundancy 
model. For instance, the outage times for the pod container 
failure and the node failure scenarios were reduced from 32.019 
and 300.852 seconds to 0.730 and 38.582 seconds, respectively. 
The reason is that with the N-Way Active redundancy model, 
the recovery does not depend on the repair of the faulty unit and 
the service is recovered as soon as Kubernetes detects the failure. 
The results show that the repair actions and the healing 
capability of Kubernetes are not sufficient for supporting 
availability and adding redundancy can significantly decrease 
the downtime. 

C. Evaluating the Repair Actions with Most Responsive 

Configuration of Kubernetes for Supporting Availability  

(RQ3) 

As observed in subsections A and B, the default 
configuration of Kubernetes has a significant impact on the 
service outage. Our analysis for the different failure scenarios 
has led to the identification of the aspects that need to be 
modified to reduce the observed outage. One aspect affecting the 
service outage is the graceful termination signal sent to the 
application container in the scenario of pod container failure. For 
the node failure scenarios, the frequency of node status posting 
by Kubelet to the master and the number of allowed missed 
status updates before marking a node as unhealthy are the main 
aspects that affect the service outage.  

1) Experiments  

We perform two sets of experiments where Kubernetes has 
the most responsive configuration. In the first set, for the pod 
container failure, the configuration parameter for the graceful 
termination of pods is set to zero second. In the second set, for 
the node failure, the configuration parameters related to handling 
node failure are set to the lowest value possible (one second). 
We are aware of the network overhead and potential false node 
failure reports for the most responsive configuration. However, 
our goal in this experiment is to measure the best achievable 
availability when deploying applications with Kubernetes. 
These experiments were conducted with both No-Redundancy 
and N-Way Active redundancy model architectures (Fig. 5 and 
Fig. 7). 

Reconfiguring the Graceful Termination Period of Pods: 
As it was mentioned, when a pod container process fails, a 
graceful termination signal is sent to Docker to terminate the 
application container which delays the repair of the pod for 30 
seconds. In the No-Redundancy redundancy model, this grace 
period affects the recovery time, because a new pod will not be 
created unless the failed one completely terminates. To reduce 
this grace period, we updated the pod template and set the grace 
period to zero. We repeated the experiments for the pod 

container failure scenario and evaluated the impact of this 
change on service outage.  

Reconfiguring Node Failure Handling Parameters: To 
have the most responsive Kubernetes configuration, we 
reconfigured the Kubelet of each node to post the node’s status 
every second to the master. The node controller of the master 
was also reconfigured to read the updated statuses every second 
and only allow one missed status update for each node. We 
repeated the experiments for the node failure scenario in order 
to evaluate the impact of this reconfiguration on service outage. 

2) Results and Analysis 

The results of these experiments are presented in Table III 
and Table IV. As it was expected, Table III shows a significant 
decrease in repair time which affects the service outage of 
experiments done with No-Redundancy redundancy model. The 
service outage of experiments with the N-Way Active 
redundancy model has not changed, as the repair time does not 
play a role in the service outage in this case. We observed that 
with the new configuration, when the pod container crashes, the 
time Docker gives to the application container before forcefully 
killing it is reduced to 2 seconds. Moreover, in Table IV, we 
observe significant changes in all measured metrics. With the 
new configuration, the master allows only one missed status 
update and since each node updates its status every second, the 
reaction time is reduced to almost one second. The repair time 
also is decreased from 260 seconds to around 2.5 seconds, as the 
master will wait only one second before starting a new pod on a 
healthy node. The change in the reaction time affects the service 
outage in all the experiments. However, the repair time affects 
the outage time in the case of the No-Redundancy redundancy 
model only.    

D. Comparing Kubernetes with Existing Solutions for 

Availability Management (RQ4) 

To better position the availability results obtained with 
Kubernetes, we look into RQ4 (How does the availability 
achievable with Kubernetes compare to existing solutions?).  
AMF [12] is a standard middleware service for managing the 
availability of components based applications. It has been 
implemented, with other middleware services, in the OpenSAF 
middleware [19], a proven solution for availability management. 
In [20] we conducted a set of experiments for different failure 
scenarios with the same application, VLC. We considered the 
following failure scenarios, VLC process failure, VM failure and 
physical host failure, corresponding to VLC container failure, 

TABLE III.  EXPERIMENTS WITH KUBERNETES WITH CHANGED 

CONFIGURATION - SERVICE OUTAGE DUE TO POD CONTAINER FAILURE 

Redundancy Model 

(unit: seconds) 

Reaction 

time 

Repair 

time 

Recovery 

time 

Outage 

time 

No-Redundancy 0.708 3.039 3.337 4.045 

N-Way Active 0.521 3.008 0.032 0.554 

 

 

 

TABLE IV.  EXPERIMENTS WITH KUBERNETES WITH CHANGED 

CONFIGURATION - SERVICE OUTAGE DUE TO NODE FAILURE 

Redundancy Model 
(unit: seconds) 

Reaction 

time 

Repair 

time 

Recovery 

time 

Outage 

time 

No-Redundancy 0.976 2.791 2.998 3.974 

N-Way Active 0.849 2.173 0.022 0.872 

 

 

 



pod container failure and node failure, respectively. In the 
experiments with OpenSAF we used a No-redundancy 
redundancy model with two VLC applications, one active and 
the other one as a spare to be instantiated and take over in case 
of failure of the active. 

 

The results of the experiments with OpenSAF and the 
comparison with Kubernetes are shown in Table V and Fig. 9, 
respectively. We observe that in the cases of No-Redundancy 
redundancy model, the OpenSAF solution shows a lower outage 
time. Moreover, although the N-Way Active redundancy model 
should render a higher level of availability compared to the No-
Redundancy redundancy [18], the outage time for the node 
failure scenario of Kubernetes with N-Way Active is still 
significantly higher than for OpenSAF with the No-Redundancy 
redundancy model. The reason for this is the default 
configuration of Kubernetes that leads to a late reaction time. 

However, with the changed configuration of Kubernetes, the 
outage times in Kubernetes experiments with No-Redundancy 
architecture are comparable to those of OpenSAF. 

V. LESSONS LEARNED AND THREATS TO VALIDITY 

A. Lessons Learned 

Kubernetes supports automatic deployment and scaling of 
microservice based applications. Although Kubernetes can run 
on different cloud environments, one has to admit that its 
deployment in a private cloud is not as straightforward as in 
public clouds. Kubernetes provides availability through its 
repair actions. However, these are not sufficient for supporting 
highly availability. For example, for the node failure scenario, 
the outage time is about 5 minutes, which is equivalent to the 
amount of downtime allowed in a one-year period for a highly 
available system. Even after adding redundancy, we observed 
that the default configuration of Kubernetes still resulted in a 
significant service outage in the case of node failure. Although 
the default configuration can be changed, Kubernetes is most 
commonly used under its default configuration and figuring out 
how to reconfigure Kubernetes’ reaction to node failure while 
avoiding network overhead and false positive reports can be 
complicated and requires a great effort.  

B. Threats to Validity 

1) Internal Validity: the following internal threats can affect 

the validity of our results. First, all experiments were conducted 

in a small cluster consisting of only a master and two worker 

nodes. Kubernetes may behave differently in larger clusters 

which may impact the availability measurements presented in 

our experiments. Second, the availability measurements may 

also vary depending on the application’s complexity and the 

collocated applications managed by Kubernetes. In our 

experiments, we considered a simple case of only one 

microservice. We understand that these factors may impact the 

results of our study. However, we believe that these factors can 

only decrease the availability of the application.  The mapping 

of the metrics to the concrete events is the biggest threat and 

requires more investigation as one can map them differently, in 

which case all the measurements could be different. However, 

we believe that even with a different mapping what would 

change is the split between reaction and repair times and reaction 

and recovery times, thus, resulting still in the same outage time. 

We may observe a decrease in the reaction time which adds to 

the recovery time, or inversely but the total outage time would 

be the same since it represents the duration in which the service 

was not available. 

2) External Validity: We only considered the case of a video 

streaming application. Before generalizing the results, one has 

to consider other types of applications even though the 

conducted experiments and the analysis give some indications 

about the availability of the applications deployed with 

Kurbernetes. 

3) Construct Validity: Regarding the extent to which the 

observed phenomena correspond to what is intended to be 

observed, we see another threat related to the tools and 

mechanisms used in our experiments. Indeed, we rely on the 

TABLE V.  EXPERIMENTS WITH OPENSAF 

Failure Trigger 
(unit: seconds) 

Reaction 

time 

Repair 

time 

Recovery 

time 

Outage 

time 

VLC Process  Failure 0.650 - 0.145 0.795 

VM Failure 3.233 - 0.123 3.351 

Physical Host Failure 3.229 - 0.118 3.346 

 

 

 

 
Fig. 9. Comparing Kubernetes and OpenSAF from availability 

perspective. a) VLC container failure scenario, b) Pod container 

failure scenario, c) Node failure scenario. 
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timestamps reported in Kubernetes and Docker logs. However, 

we used NTP to synchronize the time between the nodes. Other 

strategies can be used and may be more meticulous, for instance, 

container instrumentation. However, we believe that the 

considered logs are precise enough for our needs, and to mitigate 

this threat, we cross-checked the timestamp data in the different 

logs (i.e. Kubernetes, Docker, and systemd journal). Moreover, 

to alleviate any particular result expectancies we used the same 

process for the different failure scenarios. 

VI. RELATED WORK 

The architectural style of microservices has emerged 
primarily from the industry [2]. It is being adopted and 
investigated from different perspectives by practitioners and to 
a smaller extent by researchers in academia as well. In this 
section, we review related work focusing to the availability of 
microservice based architecture.  

Dragoni et al. in their work [3] propose the definition of a 
microservice as a small and independent process that interacts 
by messaging. They define the microservice based architecture 
as a distributed application composed of microservices and 
discuss the impact of microservices on the quality attributes of 
the application. Along with performance and maintainability, 
they specifically discuss availability as a quality attribute which 
is impacted by the microservice based architecture. Emam et al. 
in [21] found that as the size of a service increases, it becomes 
more fault-prone. Since microservices are small in size, in 
theory, they are less fault-prone. However, Dragoni et al. argue 
that at integration, the system will become more fault-prone 
because of the complexity of launching an increasing number of 
microservices. 

Khazaei et al. in [22] propose a microservice platform for the 
cloud by using a Docker technology that provisions containers 
based on the requests of microservice users. One of the key 
differences between this platform and Kubernetes is that this 
platform has the ability to ask for more VMs from the 
infrastructure when needed while Kubernetes does not. Kang et 
al. in [23] propose a microservice based architecture and use 
containers to operate and manage the cloud infrastructure 
services. In their architecture, each container is monitored by a 
sidekick container and in case of failure, recovery actions are 
taken. They performed some experiments and concluded that 
recovering from container failure is faster than recovering from 
VM failure.  

Netto et al. in [24] believe that Kubernetes improves the 
availability of stateless applications but faces problems when it 
comes to stateful applications. They integrated a coordination 
service with Kubernetes to offer automatic state replication. In 
their architecture, all replicas of a pod execute the incoming 
requests while only one, which has received the request from the 
client, will respond. This way, the state is replicated. They 
evaluated some metrics such as latency and they concluded that 
the latency increases with the number of pod replicas. 

In our study, we performed a quantitative evaluation and 
analysis of availability for microservice based applications 
deployed with Kubernetes. We considered several failure 
scenarios, configurations and redundancy models. We compared 

the results with Kubernetes to similar settings with OpenSAF to 
position Kubernetes from the availability perspective.     

VII. CONCLUSION AND FUTURE WORK 

In this paper, we presented and compared architectures for 
deploying microservice based applications in Kubernetes 
clusters hosted in public and private clouds. Through our 
investigations, we learned that although it is not stated in 
Kubernetes’ documentation [15], Kubernetes is more tailored 
for public clouds than for private clouds. We conducted 
experiments in a private cloud environment, considering 
different failure scenarios, configurations, redundancy models, 
to evaluate Kubernetes from the perspective of the availability 
of the applications running on Kubernetes. We analyzed the 
results of our experiments and found that the repair actions of 
Kubernetes are not sufficient for providing availability, 
especially high availability. For instance, the default 
configuration of Kubernetes results in a significant outage in the 
case of node failure.  Kubernetes can be reconfigured to avoid 
this significant outage and under its most responsive 
configuration, outage times in Kubernetes experiments are 
comparable to those of OpenSAF, a proven solution for 
availability management. We also observed that adding 
redundancy can significantly decrease the downtime since the 
service is recovered as soon as Kubernetes detects the failure and 
it does not depend on the repair of the faulty unit.  In our future 
works, we will investigate architectures for deploying stateful 
microservice based applications with Kubernetes. More 
investigations are also required to find out the impact of 
reconfiguring Kubernetes on network overhead and false 
positive node failure reports.  We will also consider, the case of 
multiple masters and failure from the master side, as well as 
Kubernetes behavior in case of network partitioning.  
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